MareArts Road Objects Detector
🚗 MareArts Road Objects Detection
📂 GitHub: MareArts-Road-Objects
High-performance road object detection with 8-class support: person, bicycle, motorcycle, car, bus, truck, traffic_light, stop_sign. Built with advanced deep learning for accurate real-time detection.
✨ Features
- 🎯 8-Class Detection: 👤 person, 🚲 bicycle, 🏍️ motorcycle, 🚗 car, 🚌 bus, 🚚 truck, 🚦 traffic_light, 🛑 stop_sign
- ⚡ GPU Acceleration: NVIDIA CUDA and DirectML support
- 🛠️ CLI Interface: Easy command-line tools (
ma-robj,marearts-robj) - 🌐 Cross-platform: Windows (x64/ARM64), macOS (Intel/Apple Silicon), Linux (x64/ARM64)
- 🔑 Unified License: Same license works for both MareArts-ANPR and Road Objects
- 🚀 Auto-download: Models download automatically on first use
🚀 Quick Start
Installation
# Basic installation (CPU)
pip install marearts-road-objects
# With GPU acceleration (recommended)
pip install marearts-road-objects[gpu] # NVIDIA CUDA
pip install marearts-road-objects[directml] # Windows DirectML
pip install marearts-road-objects[all-gpu] # All GPU support
🔑 Get Your License
One license works for both ANPR and Road Objects packages!
Subscribe to MareArts ANPR/LPR Solution →🐍 Python API
Simple Detection
import cv2
from marearts_road_objects import ma_road_object_detector
# License credentials - Option A: Hardcoded
username = "your-email@domain.com"
serial_key = "your-serial-key"
signature = "your-signature"
# Initialize detector ONCE (model downloads automatically on first use)
detector = ma_road_object_detector(
model_name="small_fp32", # Options: small_fp32, medium_fp32, large_fp32
user_name=username,
serial_key=serial_key,
signature=signature,
backend="auto", # Options: "auto", "cuda", "directml", "cpu"
conf_thres=0.5, # Confidence threshold (0.0-1.0)
iou_thres=0.5 # NMS IoU threshold (0.0-1.0)
)
# Use detector.detector() for inference (can be called repeatedly in loops)
image = cv2.imread("traffic.jpg")
result = detector.detector(image)
# Result format (JSON)
print(result)
📊 Model Comparison
Choose the right model for your needs:
| Model Name | Model Size | Detection Speed | Accuracy |
|---|---|---|---|
small_fp32 |
102 MB | 8ms (125 FPS) | Standard |
medium_fp32 |
195 MB | 83ms (12 FPS) | Better |
large_fp32 |
314 MB | 96ms (10 FPS) | Best |
- GPU: NVIDIA GeForce RTX (CUDA)
- CPU: Modern x86_64 processor
- Backend: CUDA (GPU accelerated)
🛠️ CLI Usage
Configure License
# Interactive setup (recommended)
ma-robj config
# Or set environment variables
export MAREARTS_ANPR_USERNAME="your-email@domain.com"
export MAREARTS_ANPR_SERIAL_KEY="your-serial-key"
export MAREARTS_ANPR_SIGNATURE="your-signature"
# After configuration, source the environment:
source ~/.marearts/.marearts_env
Available Commands
ma-robj config # Configure license credentials
ma-robj validate # Validate license
ma-robj detect IMAGE # Detect objects in image
ma-robj gpu-info # Check GPU acceleration support
ma-robj version # Show package version
ma-robj detect traffic.jpg # Detection Example
Command Aliases: ma-robj, marearts-robj, marearts-road-objects (all work the same)
📊 Output Format
ANPR-compatible JSON format for easy integration:
{
'results': [
{
'ltrb': [88.1, 421.0, 164.9, 476.2], # Bounding box [left, top, right, bottom]
'ltrb_conf': 85, # Confidence 0-100 (integer)
'class_id': 3, # Class ID (0-7)
'class': 'car' # Class name
},
{
'ltrb': [201.3, 401.7, 265.1, 452.2],
'ltrb_conf': 84,
'class_id': 3,
'class': 'car'
}
],
'ltrb_proc_sec': 0.178 # Processing time in seconds
}
🎯 Detection Classes
| ID | Class | Description |
|---|---|---|
| 0 | person | Pedestrians and people |
| 1 | bicycle | Bicycles |
| 2 | motorcycle | Motorcycles and scooters |
| 3 | car | Passenger cars |
| 4 | bus | Buses |
| 5 | truck | Trucks and vans |
| 6 | traffic_light | Traffic signals |
| 7 | stop_sign | Stop signs |
🔧 Environment Variables
# Skip model update checks for faster initialization (production)
export MAREARTS_ROBJ_SKIP_UPDATE=1
# Enable verbose logging for debugging
export MAREARTS_VERBOSE=1
🎯 Try Road Object Detector
Web Demo: https://live.marearts.com/?menu=road_objects
API Test (1000 free requests/day) - Just change the model name and image path:
curl -X POST "https://we303v9ck8.execute-api.eu-west-1.amazonaws.com/Prod/marearts_robj" \
-H "Content-Type: image/jpeg" \
-H "x-api-key: !23J4K9L2Wory34@G7T1Y8rt-PP83uSSvkV3Z6ioSTR!2" \
-H "user-id: marearts_robj@public" \
-H "model_name: small_fp32" \
--data-binary "@your_image.jpg"
Only change: model_name (small_fp32/medium_fp32/large_fp32) and @your_image.jpg
🆘 Support
- Live Test : https://live.marearts.com
- License: Get your subscription
- Issues: GitHub Issues
- Email: hello@marearts.com
🔗 Related Packages
MareArts AI Ecosystem (same license for all):
- marearts-anpr - License plate recognition (ANPR/ALPR)
- marearts-crystal - Licensing framework
- marearts-xcolor - Color space conversions
photo by Andrea Cau on Unsplash
© 2024 MareArts. All rights reserved.